Experimental Soft Matter Physics

Solvent-solute interactions


Lyotropic liquid crystals are long-range ordered liquids arising in certain suspensions or solutions of nanoparticles or amphiphiles. We work with both classes, for instance formed by nanorods of crystalline cellulose (cellulose nanocrystals, CNC) suspended in water, and by aqueous solutions of surfactants like SDS or CTAB, sometimes with suitable co-surfactants, respectively. When chirality is introduced into the system, for instance from the cellulose in the CNC or by chiral molecules mixed into the micelles formed by surfactant molecules, this may manifest itself on macroscopic scale through a helical modulation. This is a quite extraordinary phenomenon which is far from trivial to understand, considering that the chiral objects (nanorods or micelles) are separated by a considerable fraction of solvent. There are indications that the solvent may play an active role in this chirality transfer, which would mean that the specific interactions between solute or suspended particle surface, and the solvent molecules, plays a role for the overall ordered structure. This is an issue that we have started to investigate within one of our projects.
BackButtonBack to research overview.

Three most recent publications

tlct_a_1363916_uf0001_c
Elucidating the fine details of cholesteric liquid crystal shell reflection patterns
Yong Geng, JungHyun Noh, Irena Drevensek-Olenik, Romano Rupp, and Jan P. F. Lagerwall
Liquid Crystals, DOI: 10.1080/02678292.2017.1363916 (2017)


Get
Why organically functionalized nanoparticles increase the electrical conductivity of nematic liquid crystal dispersions
Martin Urbanski, and Jan P. F. Lagerwall Journal of Materials Chemistry C, DOI: 10.1039/C7TC02856C (2017)


jpcm g.abs-spinstack copy

Liquid crystals in micron-scale droplets, shells, and fibers
Martin Urbanski, Catherine G. Reyes, JungHyun Noh, Anshul Sharma, Yong Gang, Venkata Subba Rao Jampani, Jan P.F. Lagerwall
J. Phys,: Condens. Matter, DOI: 10.1088/1361-648X/aa5706 (2017)



More publications can be found here.